

 Tetrahedron Letters, Vol. 38, No. 10, pp. 1711-1712, 1997

 © 1997 Elsevier Science Ltd

 All rights reserved. Printed in Great Britain

 0
 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)00177-9

Catalysis of the Oxidation of Triphenylphosphine and of Trimethyl Phosphite by Hydrogen Peroxide in the Presence of Fe^{III} Compounds

Derek H. R. Barton,* David R. Hill and Bin Hu

Department of Chemistry, Texas A & M University, College Station, TX 77843-3255

Abstract: The oxidation of triphenylphosphine to the corresponding oxide in pyridine is faster in the presence of Fe^{II} compounds, especially FeCl₃. Even greater effects are seen for the oxidation of trimethyl phosphite. © 1997 Elsevier Science Ltd. All rights reserved.

In the Fe^m-Fe^v manifold of Gif Chemistry, illustrated (without ligands) in Scheme 1, we have always proposed that the reaction of the Fe^m species with H₂O₂ is fast.^{1,2} When simple ligands are used, as in FeCl₃, the catalase reaction is indeed very fast.³ For this reaction we have presented evidence that H₂O₂ reacts with the Fe^v=O to furnish Fev-O-O-H which collapses as indicated to Fe^m and O₂. The enzyme catalase also reacts very rapidly with H₂O₂.³

$$Fe^{III} + H_2O_2 \longrightarrow Fe^{III} O OH \longrightarrow Fe^{V=O}$$

Scheme 1

In a recent paper, Talsi and his collaborators have shown by EPR and ¹H-NMR spectroscopy that similar reactions, with picolinic acid ligands, are also very fast.⁴ We now wish to report another way in which the speed of the reaction of H_2O_2 with an Fe^{III} species can be evaluated.

It is well known that P^{III} species react rapidly with H_2O_2 to furnish the corresponding oxo-compounds and water. If one could demonstrate that Fe^{III} had a powerful catalytic effect on this reaction then it would be clear that the H_2O_2 had reacted with Fe^{III} to make an iron species which was a much faster oxidant of P^{III} than the hydrogen peroxide originally used.

In the Table we have summarized data on the rates of reaction of PPh₃ and (MeO)₃P with H_2O_2 and the effect of 10% of an Fe^{III} catalyst. In the case of (MeO)₃P there is very large rate difference using FeCl₃ and a number of other ligands including picolinic acid. In the case of PPh₃ there is a major rate difference also using FeCl₃. The other differences are also significant since only 0.1 mmol of catalyst was used.

We conclude that the rate of reaction of H_2O_2 with Fe^{III} using various ligands is 40 times or more faster than the reaction of H_2O_2 and PPh₃ without the catalyst. Hence, the rate of reaction of H_2O_2 with Fe^{III} in Gif-type Chemistry using the same ligands is not the rate limiting step. The effects are even greater with (MeO)₃P.

Entry	Reagents	Conditions	Half-life
1	$PPh_3 + H_2O_2$		4 min
2	$PPh_3 + H_2O_2$	FeCl ₃ •6H ₂ O	< 10 sec
3	$PPh_3 + H_2O_2$	Fe(acac) ₃	30 sec
4	$PPh_3 + H_2O_2$	Fe(PA) ₃ ^b	50 sec
5	$PPh_3 + H_2O_2$	Fe(NO ₃) ₃ •9H ₂ O	1 min
6	$(MeO)_3P + H_2O_2$		75 min
7	$(MeO)_3P + H_2O_2$	FeCl ₃ •6H ₂ O	< 10 sec
8	$(MeO)_3P + H_2O_2$	Fe(acac) ₃	5 ~ 6 min
9	$(MeO)_3P + H_2O_2$	Fe(PA) ₃ ^b	1 min
10	$(MeO)_3P + H_2O_2$	Fe(NO ₃) ₃ •9H ₂ O	9 min

Table 1. Oxidation of PPh₃ and (MeO)₃P with H_2O_2 in the presence or absence of Fe^{III} salts ^{*}

a) All the experiments were carried out with Fe^{III} (0.1 mmol), PPh₃ or (MeO)₃P (1 mmol) and H₂O₂ (1 mmol) in pyridine (3 mL) at -20 °C. b) PA = Picolinate.

EXPERIMENTAL

The experiments were carried out on a Varian 200 MHz NMR with a broadband probe. Typical instrumental parameters: Spectral width: 26000 Hz; Acquisition time: 0.58 sec; Pulse width: 10.0 µsec; Frequency: 81 MHz; Delay: 0 sec; Number of transients: 16.

In a typical experiment, triphenylphosphine (1 mmol, 262 mg) or trimethyl phosphite (1 mmol, 124 mg) and the Fe^{III} salts (0.1 mmol) were dissolved in pyridine (3 mL) in a 10 mm NMR tube. The NMR tube contained a sealed tube with CD₃C₆D₅ which was used to lock the NMR. The resulting solution was cooled to -20 °C and 30% H₂O₂ (1 mmol, 100 µL) was added. The tube was then immediately transferred to the NMR probe. The variation of PPh₃/O=PPh₃ or (MeO)₃P/(MeO)₃P=O (ratio of peak intensities) was then plotted as a function of time and the half-lives of the reactions were thus determined.

ACKNOWLEDGMENTS

We thank Quest International, the Welch Foundation, the N.S.F. and the Schering-Plough Corporation for the support of this work.

REFERENCES

- 1. Barton, D.H.R.; Doller, D. Acc. Chem. Res. 1992, 25, 504-512.
- 2. Barton, D.H.R.; Bévière, S.D. Tetrahedron Lett. 1993, 34, 5689-5692.
- 3. Barton, D.H.R.; Hu, B. Tetrahedron 1996, 52, 10313-10326.
- 4. Sobolev, A.P.; Babushkin, D.E.; Shubin, A.A.; Talsi, E.P. J. Mol. Cat. A: Chemical 1996, 112, 253-258.

(Received in USA 2 December 1996; accepted 23 January 1997)